

FACULTY OF EARTH AND ENVIRONMENTAL SCIENCES AND ENGINEERING

RESERVOIR MANAGEMENT AND SIMULATION LAB

MSc in Petroleum Engineering MFKOT740015

COURSE DESCRIPTION

FACULTY OF EARTH AND ENVIRONMENTAL SCIENCES AND ENGINEERING MINING AND ENERGY INSTITUTE

2024. Spring Term

Course Data Sheet

Course Title: Reservoir Management simulation lab. Instructor: Dr. Zoltán TURZÓ associate	Code: MFKOT730015 Responsible department/institute: DPE/IPNG (OMTSZ/KFGI)
professor	Course Element: Compulsory
Position in curriculum*(which semester):4(3)	Pre-requisites (if any): Flow in Porous Media MFKOT730035
No. of contact hours per week (lecture + seminar): 0+3	Type of Assessment (examination / practical mark / other): practical mark
Credits: 3	Course: full time

Course Description:

- 1. Definition of reservoir management.
- 2. Short history.
- 3. Basics of reservoir management. Goals.
- 4. Realization.
- 5. Monitoring.
- 6. Evaluation.
- 7. Case studies.
- 8. Data acquisition and analysis.
- 9. Material Balance calculations.
- 10. Numerical simulation.
- 11. Economic considerations.
- 12. Risk analysis.
- 13. EOR methods.
- 14. Case studies
- Competencies to evolve:
- Knows the economic processes related to the hydrocarbon industry.

Knows the properties of the fluids found in petroleum, natural gas and geothermal reservoirs, as well as the storage rocks; characteristics of flow in such reservoirs.

Knows the production mechanisms of underground reservoirs and the primary or enhanced extraction mechanisms that ensure optimal production.

Knows the basics of numerical simulation of underground storages.

Knows the methods and tools of computerized design and analysis in the hydrocarbon industry. Ability:

Able to interpret the economic processes related to the hydrocarbon industry and to give adequate answers to them.

Capable of predicting the behavior of fluids in petroleum, natural gas, and geothermal reservoirs, the properties of reservoir rocks, and the characteristics of flow in such reservoirs.

Able to recognize the production mechanisms of underground reservoirs and select the primary or enhanced extraction mechanisms that provide optimal production.

Capable of numerical simulation of underground storages.

Able to select equipment for field and transmission line transport and supervise the operation of the equipment and manage the participating groups.

Capable of hydrocarbon industrial computer design and analysis.

Attitude:

Autonomy and responsibility:

Able to independently manage hydrocarbon industrial complex planning works and perform project management tasks, or participate in them.

Capable of independently choosing the appropriate mechanisms for the production of underground reservoirs; to implement the most favorable "reservoir management".

Able to autonomously plan the use of energy carriers produced from renewable natural resources and residual materials in the energy supply system, and manage the operation of the established system.

Takes responsibility for his/her professional decisions and the work processes carried out by him/her or under his/her control.

Assessment and grading:	Grading scale:		
Students will be assessed with using the	% value	Grade	
following elements.			

Attendance: Midterm exam	5 % 40 %	90 -100%	5 (excellent)
Final exam	55 %	80 - 89%	4 (good)
Total	100%		3
		70 - 79%	(satisfactory
)
		60 - 69%	2 (pass)
		0 - 59%	1 (failed)

Compulsory or recommended literature resources:

- Fanci: Principles of Applied Reservoir Simulation, Gulf Publishing Co. 2001, ISBN 0-88415-372-X
- Ertekin AbouKassem King: Basic Applied Reservoir Simulation, SPE Textbook Series, 2001, ISBN 1-55563-089-8
- T. Ahmed: Advanced Reservoir Engineering, Gulf Publishing Co. 2005, ISBN-13: 978-0-7506-7733-2
- A. Satter: Integrated Petroleum Reservoir management: A Team Approach. Pennwell Books, 1994, ISBN 0-87814-408-0
- A. Satter: Computer Assisted Reservoir Management Pennwell Books, **ISBN:** 978-0-87814-777-9

Date	Торіс	
2024.02.16	Definition of reservoir management. Short history. Basics of reservoir	
	management. Goals.	
2024.02.23	Realization. Monitoring.	
2024.03.01	Evaluation. Case studies.	
2024.03.08	Data acquisition and analysis.	
2024.03.22	Numerical simulation.	
2024.04.12	Economic considerations. Risk analysis.	
2024.04.19	EOR methods. Case studies	
2024.04.26	Test writing.	

Course Schedule for 2023/24 school year, spring term

Test example **CLOSED BOOK** (10 minutes)

NAME of STUDENT: _____ ID No.:_____

1. Mark the correctness of the following statements.

	TR	FA
	U	LS
	E	E
The liquid expansion drive effective of early stage of production		
in saturated reservoir, when the reservoir pressure less than the bubble-point pressure		
The strong water influx will decrease the recovery factor of gas reservoir		
The high vertical permeability is favorable condition of in bottom water drive reservoir (results higher recovery factor)		
The EOR can only start after the depletion of a hydrocarbon reservoir.		
At EOR procedures different fluids (gas, vapor or liquid) are injected into the annulus to support lifting the liquid in the tubing to the surface.		

2. Make a list of natural production mechanism:

a.	
b.	
c.	
d.	
e.	
f.	

"I pledge that I have neither given nor received any unauthorized assistance on this quiz."

Student's Signature: _____

Examination review questions

Final Exam Open BOOK

(max 80 minutes)

Student Name:	••••
Student ID No.:	••••

Question	Marks	Score
No.		
1	12	
2	25	
Total	37	

"I pledge that I have neither given nor received any unauthorized assistance on this exam."

Student's Signature: _____

Question No. 1

Task-1 Determine the type of the hydrocarbon reservoir, when the following data is known! You can use the phase envelop curve.

Reservoir pressure		220	BARg
Reservoir temperature	110	°C	
Reservoir depth	2100	m	

Atmospheric Molecular Density Component Mol% at 15 °C, 1 Weight **Boiling Point** 0.000 N_2 0.000 CO_2 C_1 91.350 4.030 \mathbf{C}_2 C_3 1.530 0.390 i-C₄ n-C₄ 0.430 0.150 i-C5 n-C₅ 0.190 C_6 0.390 0.361 C_7 0.285 C_8 0.222 **C**9 142.3 C_{10+} 0.672 174.150

Determine the following parameters			
Type of Hydrocarbon reservoir			
Specific gravity C ₁₀₊ at 15 °C, 1.01			
BARa			
Cricondentherm temperature oC			
Cricondentherm pressure BARa			
Cricondenbar temperature oC			
Cricondenbar pressure BARa			

Measured well stream composition is

Question No. 2

PVT data Reservoir temperature 164 deg F Solution GOR = 475 scf/STB Oil gravity = 54.2 °API Gas specific gravity= 0.700 Water Salinity = 20 000 ppm

Measured data Bubble point pressure $(p_b) = 1080$ psig Formation volume factor at bubble point = 1.48 RB/STB Initial reservoir pressure $(p_i) = 2779$ Formation volume factor at (p_i) initial reservoir pressure = 1.41 RB/STB Oil viscosity at (p_i) initial reservoir pressure = 0.33 cP Gas-oil ratio at (p_i) initial pressure = 475 scf/STB

With PVT matching determine which correlation method is the best of calculate the buble point pressure, gas oil ratio, oil formation volume factor (oil FVF), and the oil viscosity.

	The best correlation formulae is
$P_b. R_s, B_o$	
Oil viscosity	

The following dates were calculated for given oil reservoir by volumetric reserve estimation method:

Reservoir temperature 164 deg F Initial reservoir pressure $(p_i) = 2779$ Average porosity $\phi = 16.8$ % Connate water saturation $S_{wi}=40$ % Rock compressibility cr= 4 10⁻⁶ 1/psi **O.O.I.P = 8.0 MMSTB**

The relative permeability data given in the following form

Tank Input Data - Relative F	Permeat	oilities			
V Done X Dancel	Help	Plot	Сору	Calc	
Tank Water Parameters Influx					
Rel Perm. from Corey Hysteresis No Modified No	Function			Water Sweep Gas Sweep	p Eff. 100 percent p Eff. 100 percent
		Residual Saturation	End Point	Exponent	
		fraction	fraction		
	Krw	0.4	0.6	3	
	Kro		0.65	3	
	Krg	0.08	0.4	3	
WARNING : Enter saturations relative to total system					
<pre><< Prior Next ≥></pre>					

Date	Р	N _p	G _p	W _p
	(psia)	(MSTB)	(Mscf	(MSTB)
1966.01.01	2779	0	0	0
1966.02.01	2685	20.821	10206	0
1966.04.01	2473	79.405	42651	0.374
1966.08.01	2259	166.065	82485	0.822
1967.02.01	1959	314.099	160170	12.887
1968.01.01	1660	580.419	282150	27.631
1970.01.01	1309	1089.315	512110	56.637
1972.01.01	1172	1436.899	688090	84.795
1974.01.01	1122	1633.927	780260	111.865
1976.01.01	1095	1693.737	802200	143.256
1980.01.01	1080	1761.704	803360	289.432

The oil production start at 1, January 1966 The production history listed below

Use the history matching of MBAL program and determine is there any water influx or not

1. Mark the correctness of the following statements.

	TR	FA
	U	LS
	E	E
There is a water influx into the examined oil		
reservoir		

If the above answer yes, then the following information can be obtained from a geologist.

Reservoir thickness h=10 ft Reservoir radius r_{res} =3526 ft Outer/inner radius ration r_D =5 Encroachment angle θ =180 degre Aquifer permeability k_w= 8.5 mD

Determine the following parameters		
O.O.I.P		
Outer/inner radius ration		
Encroachment angle		
Aquifer permeability		